

Плазменнопучковые методы модификации материалов

С.Д. Федорович, В.П. Будаев, А.В. Дедов, А.В. Елецкий

FedorovichSD@mail.ru

Работа поддержана грантами РНФ 17-19-01469, РФФИ 19-29-02020, Мегагрантом 14.Z50.31.0042

> 16-18 сентября 2020 г Воронеж, Россия

Введение

На кафедре общей физики и ядерного синтеза национального исследовательского университета «МЭИ» за последние несколько лет разработаны и апробированы технологии создания поверхностей конструкционных материалов с новыми физико-химическими свойствами. Первое направление – использование плазменно-теплового воздействия, второе – улучшение свойств функциональных поверхностей внедрением углеродных наноматериалов при использовании лазерного и электронного облучения.

При воздействии на материал экстремальных плазменно-тепловых нагрузок обнаружены эффекты формирования высокопористых наноструктурных материалов нового поколения. Такая структура поверхности твердого тела наблюдается после воздействия плазмы на материалы в условиях сильной неравновесности при одновременном вовлечении множественных механизмов эрозии и переосаждения эродированного материала, плавления, движения и отвердения поверхностных слоев на масштабах от десятков нанометров до сотен микрометров.

Характерным свойством структуры измененной поверхности материалов является стохастическая кластеризация рельефа поверхности: иерархическая гранулярность, негауссова статистика высот рельефа, что определяет новые физико-химические свойства таких материалов и представляет интерес для их использования в различных технологиях: управление турбулентными потоками в плазме и аэродинамике, катализаторы для водородной энергетики, сенсоры, биомедицинские технологии. Поверхность после мощного плазменного воздействия: обнаружено явление роста самоподобной стохастической структуры поверхности – фрактального роста начиная от наномасштабов

Применение для атомных и термоядерных реакторов, гиперзвуковых ЛА, биотехнологий и др.

Поверхность после мощного плазменного воздействия

Материалы нового поколения. Металлические, углеродные, композиты, в т.ч. вольфрам, молибден, бериллий, титан и др. Потенциал технологических применения для эксплуатации при экстремальных тепловых и плазменно-пучковых нагрузках, катализаторы, медико-биологические применения

Фрактальный рост материалов, уникальная структура с топологической размерностью D=2.3

04

Будаев В.П. Письма в ЖЭТФ 105, 5 (2017)

РАБОТЫ В НИУ «МЭИ» ПО ПЛАЗМЕННЫМ, ПУЧКОВЫМ И ТЕПЛОВЫМ ИСПЫТАНИЯМ МАТЕРИАЛОВ, КОМПОНЕНТОВ СТЕНКИ ТЕРМОЯДЕРНОГО РЕАКТОРА

Электронно-пучковая установка термо-циклические нагрузки, 1- 320 МWт/м2

Тепловые испытания охлаждаемых модулей ИТЭР, КПС, >10-20 МВт/м2

0.5—2.5 МРа, 1 kg / s, интенсивное водяное охлаждение 15⁻60° С, двухфазными потоками

ПЛМ –плазменная ловушка мультикасповая магнитная линейная система, мультикасп 8-польный

В=0.01Т-0.2Т, ne=5x10¹⁸ м⁻³, Te =2-50 эВ Рабочий газ – гелий, аргон, дейтерий Стационарный разряд - до 200 мин Нагрузка на мишени - 1-5 МВт/м2. Ионный поток - до 3x10 ²¹м⁻²c⁻¹ Диаметр\длина камеры – 160\800 мм

«Альтернативная и интеллектуальная

энергетика»

07

Методика эксперимента

ПЛМ –плазменная ловушка мультикасповая вакуумная камера и магнитная система

3D topology of magnetic field lines near the cusp Budaev e a Magnetohydrodynamics, 2019, 55, 31 $\mathbf{B}\mathbf{C}$

«Альтернативная и интеллектуальная энергетика»

Результаты и обсуждение

ITER-grade

MIRAS TESC

Рост наноструктурного пуха на W ITER-grade из токамака Т-10

PLM helium plasma test 200 minutes, 0.5-1 MW/m2, target t=900 °C nanostructured fuzz growth nanofibers of 20-50 nm

«Редкий» и «плотный» пух на вольфраме гелиевый разряд в ПЛМ

ПЛМ ~100 минут толщина пуха ~ 1.6 µm

Стойкость пуха W к механическим нагрузкам

Вольфрам ВМП- IG с наноструктурированным пухом после механического испытания поверхности соскобом - полосы механического воздействия указаны стрелками

Универсальность роста нано- микроструктурных высокопористых поверхностей W, Mo, Ti, Ni, Fe

- E_{ion}>20 50 eV
- T_{surf}>900K
- флюенс>~10²⁴m⁻

W, Mo, Ti, Ta, Pt, Ni, Fe

Модель Мартыненко Ю.В. ФП 2012

Условия роста «пуха» (fuzz)

G. De Temmerman et al, PPCF, (2018)

Компьютерная программа SOLPS, используемая для расчетов плазменных параметров в периферии плазмы токамака, позволила сделать вывод: «пух» (fuzz) может формироваться в узком слое в диверторе (~1.6-3.6m2).

Установка ПЛМ-2 для полномасштабных плазменно-пучковых испытаний материалов гибридного термоядерного реактора

Плазменная установка ПЛМ-2 не имеет аналогов в России, будет в ряду самых мощных уникальных установок в мире (MAGNUM-PSI EC. MPEX США); базе имеюшейся сооружается на плм. установки Новые цели: полномасштабные испытания материалов гибридного термоядерного реактора: W, Mo, сталь И др. жидкометаллические (литий, олово и др.) компоненты стенки; создание новых наноструктурированных материалов

Испытание материалов термоядерного реактора

Создание наноструктурированных пористых материалов

Технологии плазменного космического двигателя мощностью более 100 кВт Технологии плазменного упрочнения лопаток турбин

	ПЛМ	ПЛМ-2
Диаметр камеры/пучка, см	16/3,5	16/3,5-10
В, Тл	0.01-0.2	0.02-2
n _e ,м ⁻³	5x10 ¹⁸	10 ¹⁹ - 10 ²⁰
Те , эВ	2-50	10-100
Ионный поток, м ^{−2} с ^{−1}	3x10 ²¹	10 ²³ - 10 ²⁵
Нагрузка на мишени МВт/м²	1-5	>10
Стационарный разряд более 200 мин		

Рабочий газ – гелий, дейтерий, Аг

Повышенная удельная сорбционная поверхность

Плазменный ускоритель КСПУ, W, 1.5 МДж/м², 1 мс

сферические кластеры, состоящие из более мелких кластеров ~ 0.02 ÷ 2 µm
топология иерархической гранулярности агломератов
W, Be, C одинакова
Фрактальная размерность структуры 2.2

Применение в медицине – биосовместимая шероховатость фрактальной поверхности

19

Современные кардиостимуляторы, нейростимуляторы, протезы.

Требуется биосовместимая фрактальная структура с шероховатостью от нанометровых масштабов

Yu V Martynenko and V P Budaev. <u>Plasma technology for surface processing of the ruthenium pacemaker electrodes</u> Journal of Physics: Conference Series 1383, 012027 (2019)

Мартыненко Ю.В., Будаев В.П. Плазменная технология формирования поверхности электродов кардиостимуляторов из рутения Вестник МЭИ № 6. С. 64—70 (2019 г.)

Пористые катализаторы

Новые высокопористые W катализаторы разложения воды на кислород и водород

Высокочувствительные датчики горючих газов, диоксида азота и др.

Модифицирование поверхности в результате нанесения наноуглеродного покрытия

Наноуглеродные структуры хорошо себя зарекомендовали в качестве упрочняющего покрытия стальной поверхности. В качестве наноуглеродного материала использовалась сажа, образованная в результате электродугового распыления графитовых электродов с последующей экстракцией фуллеренов, фуллерен C60, а также термически восстановленный оксид графена с различной степенью восстановления. Эксперименты продемонстрировали эффект многократного увеличения микротвердости поверхности малоуглеродистой стали в результате нанесения наноуглеродного покрытия с последующей обработкой интенсивным лазерным или электронным облучением.

Выводы

- 1. При испытаниях вольфрама, графита, стали, титана, тантала в плазме термоядерных установок с экстремальными импульсными нагрузками до 2 МДж/м² обнаружена неоднородная стохастическая кластеризация поверхности со свойствами самоподобия структуры гранулярности от наномасштабов до макромасштабов. Такая кластеризация качественно отличается от простейшей шероховатости типа броуновской поверхности.
- 2. Тугоплавкие металлы с подобным стохастическим рельефом востребованы в плазменных, гиперзвуковых, электрохимических, биомедицинских технологиях.
- 3. Для снижения сопротивления и тепловой нагрузки на обтекаемые поверхности при сверхзвуковых и гиперзвуковых скоростях предлагается использовать покрытие летательных аппаратов материалами с высокопористой структурой, полученной в плазменных установках.
- В биомедицинских применениях предлагается использовать электроды кардиостимуляторов с шероховатой поверхностью, полученной при обработке высокотемпературной плазмой.
- 5. Установлен экспериментально эффект упрочнения стальной поверхности при нанесении наноуглеродного материала с последующей обработкой высокоинтенсивными пучками частиц. Измерения показывают немонотонную зависимость степени упрочнения от интенсивности пучка. То есть результаты экспериментов указывают на возможность оптимизации наблюдаемого эффекта.

Перспективы технологического применения высокопористых материалов, полученных после обработки плазмой, и упрочнения поверхности пучками частиц

1. Budaev V. P. Stochastic clustering of material surface under high-heat plasma load Physics Letters A 381 (2017) 3706–3713 (2017.)

2. <u>S D Fedorovich</u>, V P Budaev, Yu V Martynenko, A V Karpov, M K Gubkin, E V Sviridov, K A Rogozin and Z A Zakletsky. Formation of titanium highly porous nanostructured surface under plasma irradiation in the PLM device Journal of Physics: Conference Series 1370 012045 (2019)

3. Budaev V.P. Innovative potential of plasma technology Journal of Physics: Conference Series 891 012301 (2017)

4. Budaev V.P. Innovative trends in development of plasma technologies Journal of Physics: Conference Series 1094 (2018) 012016 pages 1-6 (2018)

5. V P Budaev, S D Fedorovich, Yu V Martynenko, A V Karpov, M V Lukashevsky, A V Lazukin, M K Gubkin, D N Gerasimov, E A Shestakov, E V Sviridov, A Yu Marchenkov, K A Rogozin, D S Gvozdevskaya and Z A Zakletskii. <u>Stochastic nanostructure and fuzz-like structure formation on the material surface under</u> <u>powerful plasma load in the PLM device</u> Journal of Physics: Conference Series (2019)

6. V P Budaev, A V Dedov, A T Komov, S D Fedorovich and Z A Zakletskii. <u>The PLM-2 plasma device for full-scale tests of fusion reactor materials with</u> <u>stationary plasma loads: design parameters</u> Journal of Physics: Conference Series 1383 012016 (2019)

7. V P Budaev, S D Fedorovich, Yu V Martynenko, A V Karpov, D N Gerasimov, G van Oost, M V Lukashevsky, A V Lazukin, M K Gubkin, A P Sliva, E A Shestakov, E V Sviridov, A I Marchenkov e a. <u>Study of the stochastic clustering on the refractory material surface under the effect of plasma load in the PLM device</u> Journal of Physics: Conference Series 1383, 012015 (2019)

8. Мартыненко Ю.В., Будаев В.П. <u>Плазменная технология формирования поверхности электродов кардиостимуляторов из рутения</u> Вестник МЭИ № 6. С. 64—70 (2019 г.) Martynenko Yu.V., Budaev V.P. The Plasma Technology for Shaping the Electric Pacemaker Electrode Surfaces Coated with Ruthenium. Bulletin of MPEI. 2019;6:64—70. (in Russian).

9. Yu V Martynenko and V P Budaev. <u>Plasma technology for surface processing of the ruthenium pacemaker electrodes</u> Journal of Physics: Conference Series 1383, 012027 (2019)

10. Г.С. Бочаров, А.В. Елецкий, О.С. Зилова, Е. В. Терентьев, С.Д. Федорович, О.В. Чудина, Г.Н. Чурилов. Исследование механизма поверхностного упрочнения сталей наноуглеродными материалами с использованием лазерного нагрева / Физика металлов и металловедение 119 (2) с. 197–201 (2018)

11.. I.A. Khaziev, A.V. Dedov and S.D. Fedorovich Research wetting and Leidenfrost effects on struc-tured surfaces in contact with water Journal of Physics: Conf. Series 891 (2017) 012021 doi :10.1088/1742-6596/891/1/012021

Спасибо за внимание