

II International theoretical and practical conference on alternative and smart energy

> <mark>16-18 September 2020 г</mark> Voronezh, **Russia**

Intensification of heat transfer in chaotic modes

Voronezh State Technical University

Podvalny S.L., Vasiljev E.M. spodvalny@yandex.ru

Heat transfer process physical model

Intensification of heat transfer in chaotic modes

The Navier-Stokes equation

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v}\nabla)\mathbf{v} = -\frac{1}{\rho}\nabla p + \nu\nabla^2\mathbf{v} + \mathbf{g};$$

The fluid flow continuity equation

$$\frac{\partial \rho}{\partial t} + \nabla(\rho \mathbf{v}) = 0;$$

The heat transfer equation

$$\frac{\partial T}{\partial t} + \nabla (T\mathbf{v}) = k \nabla^2 T,$$

The temperature field and the fluid flow

The temperature field in diffusion mode.

The fluid flow lines in the steady state convective heat transfer.

Temperature field in convection mode.

Change in the fluid particles velocity

Fluid particles velocity change at the stage of convective heat transfer.

Change in the fluid particles velocity in the turbulent heat transfer mode.

Mode of turbulent heat transfer

Intensification of heat transfer in chaotic modes

Fluid flow lines in unsteady mode of turbulent heat transfer at successive time point with 40 s intervals.

Temperature field distribution in turbulence mode.

Comparative characteristics of critical heat transfer modes

Heat transfer mode	<i>T</i> ₁ (°C)	<i>T</i> ₂ (°C)	<i>q</i> (W/m ²)	<i>r</i> (₩/(m ² ·K))	$r = \frac{T_2 - T_{\rm BH}}{1}$
Diffusion	116	20.4	200	2.06	$T_1 - T_2 = \left(\frac{\delta_{\text{cT}}}{\lambda} + \frac{1}{\alpha}\right)$
Convection	35	20.4	200	13.49	$(\lambda_{cT} \alpha)$
Turbulence	150	24	2000	15.73	

00

Heat exchange process control system

Heat exchange control system structural diagram.

System performance check in the turbulent heat transfer stabilization mode.

References

1. Landa P S 2001 Regular and chaotic oscillations (Berlin: Springer-Verlag) p 397

Intensification of heat transfer in chaotic modes

- 2. Wichterle K and Večeř M 2020 Chapter Sixteen: Extension of balances to turbulent flows Transport and Surface Phenomena (Amsterdam: Elsevier) pp 211-18
- 3. Katopodes N D 2019 Turbulent Flow Free-Surface Flow (Oxford: Butterworth-Heinemann) pp 566-650
- 4. Podvalny S L and Vasiljev E. M 2019 Multi-alternativity information technologies in thermal processes control systems 11th IEEE Int. Conf. on Application of Information and Communication Technologies (Moscow: IEEE) 8687074
- 5. Podvalny S L, Vasiljev E M and Barabanov V F 2014 Models of multi-alternative control and decision-making in complex system Automation and Remote Control 75 No.10 1886-91
- 6. Podvalny S L and Vasiljev E M 2015 Evolutionary principles for construction of intellectual systems of multi-alternative control Automation and Remote Control 76 No.2 311-17
- 7. Podvalny S L and Vasiljev E M 2015 A Multi-alternative approach to control in open systems: origins, current state, and future prospects Automation and Remote Control 76 No.8 1471-99

spodvalny@yandex.ru